The checkered history of checkerboard distributions

. ,^{1,4} . ,² 3

¹Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132 USA ²Department of Biology, Rhodes College, Memphis, Tennessee 38112 USA ³Department of Ecology and Evolutionary Biology,2f Ecnnessee98.0314Tmxvi32**%**ap:n833.e37996and

;

A) True complete checkerboard

1 82, , 1 82, (٦. 1 84, 1 6, w 2000, 55 33 2003, **v**. 2006, H s. 200 , H 2010, " \$ 55 ۶. 2011). \$ \$ \$ (17) \$ (2004) ٦., 1 3 -55 \$ U(R, S)(R) (S) \$ \$ $\mathbf{1}_{\mathbf{x}}$.

\$ 1 (1 82) ٦ (1 84) 3 1 3 \$ \$ $\mathbf{1}_{n}$, 3.4 1 \$ ' (1 75) \$

». ".». »».

Analytical procedures

\$ \$_{*}

٦

n = 1000

 $\alpha = 0.2$

α, \$. $n\ -\ 1$ ¥., • 3 n 11 \$ ٩, α, \$ ١, 55 \$ 5 ٩ 1.

0, 1, 2, 3, ... ; (), », », « ¥7 4 ۶. Comparing congeneric and within-guild pairs to pairs of unrelated species. (٦ 11 \$ (), . ., γF 1 55 3 55

F 1000 F 1000 F F F F

Calculating power of our tests.

 $\alpha = 0.2$, , , , , , .

	· · · · ·			
ч ?			¥.*	
x 1 .	•		11	5
	12	0	0	0
	1 528	61	55	0
5	1 540	61	55	0
5	7	0	0	0
1	102	27	17	11
	11.072	1494	1 / 0 /	552
	11075	1404	1001	553
3	111/5	1511	1001	504
\$.	110	23	12	1
5 5				
	7	23	1	1
	773	1 3	1678	1476
\$	870	1 62	16 7	14 5
5	53		2	1
Notes: ,	- 5.			- S .
И,	W (1.70)	3	(200)	
15	(1 /0) (1 /0)		\$.(200)	30 2 141 1/
, 13	41 1		1	141 1

2).

3 1 3 3 -

 $\alpha = 0.257.$

s = 5 , <u>→</u>5 5 = - , = 5 , 5 , 5 , - , = 5

, , , , 1. ,, , , , , 1%

 1
 1
 1

 . 24
 1

 1
 1

 3
 1

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 24

 . 25

 . 26

 . 27

 . 28

 . 29

 . 29

 . 29

 . 29

 . 29
</tr

 $= 1, 2, 3 \qquad \alpha$, 0.2 $0.54 \ 6 \ 0.02 \ ($), 0.6 $6 \ 0.03 \ , 0.75 \ 6 \ 0.046,$

s (..., 10 1000) s (..., 10 s (.s. s - 2010).

Vanuatu

· (), · ·

¥, ¥

, 2 (\$). \$ <u>__</u>} 1 \$ 4 2 0.2 (). α \$ \$ (α, 1. 1 0.2), * 1. 1 ¥7. « \$

). 1.5 ٩ \$ 2). ¥, \$

α, 0.2, 4 1 3 (\$). <u>ب</u> 1 ,

٦., (P. 0. Myzomela). (P = 0.023)). ,

α, 0.2, ч. \$ \$ \$ \$ (P. 0. \$ ٦.,).

\$ <u>--</u>3

\$ \$ \$ \$ Ъ., ' (1 75 388) \$ \$ ¥7 4 -5 \$ 5.5., \$ () -

. -٦ \$ \$

\$

د ... ۲۰ • \$ \$ <u>__</u>} \$ \$ ٦., \$ α, 0.2 \$ $\mathbf{1}_{n}$ \$ $\overset{\flat}{\alpha}=0.20,$ \$ ۲., 55 ₈

\$ \$ \$ - $\begin{array}{c} \alpha \ , \ 0.2 \\ 1 \ 2 \end{array}$ ٩, . 1.5 \$

s. 4 10 *n* " *n* ,

5 5. ¥, 47 , -____3 55 s ъ ۶., \$ \$ \$ 3. <u>--</u>5 \$ 55 ٦.,) (\$ ٦, \$ ٩. () 55 s) (\$ ٦., \$ ٩, ٦., -\$ \$ ss -33 \$

\$ \$

- 1

.

\$ \$ 55 \$

168(,

,

١.,

)-35. ".

 $3 - 3_{1} = -3$ $3 - 3_{2} = -3$ $-3 - 3_{2} = -3_{2} = -3_{2}$ $3 - 3_{2} = -3_{2} = -3_{2}$ $3 - 3_{2} = -3_{2} = -3_{2}$ $3 - 3_{2} = -3_{2} = -3_{2}$ $3 - 3_{2} = -3_{2} = -3_{2}$ $3 - 3_{2} = -3_{2} = -3_{2}$ $3 - 3_{2} = -3_{2} = -3_{2}$ $3 - 3_{2} = -3_{2} = -3_{2}$ $3 - 3_{2} = -3_{2} = -3_{2}$ $3 - 3_{2} = -3_{2} = -3_{2} = -3_{2}$ $3 - 3_{2} = -3$

, (1 82) , (1 84) , , ,)